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SYNOPSIS

The possibility of induced torsional motions to a symmetrical structure
subjected to ground motion is illustrated. The induced torsional motions are
caused by the nonlinear coupling between the lateral and torsional motions.
This coupling arises due to the nonlinear force-displacement relations of the
resisting elements of the structure. Examples based on two types of force-
displacement relationships are glven to show how the torsional motions are
induced. The implication of such torsional motion on the ductility require-
ment of the resisting elements located at the periphery of the building is
discussed.

GLOSSARY OF TERMS

G = grourd acceleration
X,y
Ip = mass polar moment of inertia
M = total mass of platform
R = resisting elements
X,y
a,b = plan dimensions of structure as shown in Fig., 1
kx = stiffness constant
n = constant described in equation 17
u,v = horizontal lateral displacement
o = constant described in equation 17
§ 3 = displacement of resisting elements
€ = measure of nonlinearity defined in equation 15
6 = torslonal rotation
n = frequency ratic u x/m 8
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T = non-dimensional time

X,0 = restoring force functions
w, = linear natural frequency of translation
Wy = linear natural frequency of rotation

INTRODUCTION

Torsional motions of a structure caused by earthquakes may lead to
severe damages. The causes of torsional motion are generally ascribed to
asymmetrics of the building. The asymmetry may be due to the uneven distri-
bution of stiffnesses, and/or uneven distribution of masses of the structure.
Therefore, the code requirements for torsional resistance are based mainly
on the amount of eccentricity of the structure [1, 2].

Recently, it was pointed out that symmetrical builldings may be subjected
to torsional motion due to the passage of seismic wave motion [3]. The
torsional motion is induced on the symmetrical structure if the phases of the
seismic wave at different points of the ground on which the structure is bullt
are different. Therefore, symmetrical buildings with plan dimensions com-
parable to the wave length of the seismic wave would be particularly suscept-
ible to torsional motions due to this cause.

In the present paper, another mechanism through which torsional motions
may be Induced to symmetrical structures is discussed. This mechanism arises
due to the nonlinear coupling between the lateral translational motions and
the torsional motions. This coupling is caused by the nonlinear force-
displacement characteristics of the restoring forces of the structure. While
lateral motions are caused by the horizental ground motion, the torsicnal
motions are parametrically excited by the lateral motions. The condition of
exciting torsional motions by this mechanism depends mainly on the ratio of
the lateral and torsional frequencies of the structure.

STATEMENT OF PROBLEM

Let us consider a structure consisting of a stiff rectangular platform
with a total mass M and a mass polar mament of inertia In. The elements
of lateral resistance are taken to be distributed along the perimeter of the
structure, as shown in Fig. 1. This system has three degrees of freedom in
movement, namely, the horizontal lateral displacements u and v in the two
principal directions and rotation 6 about a vertical axis. The equations of
motion can be obtained by considering the general displaced position of the
platform, by an amount u in the X direction, an amount v in the Y direction
and rotated through an angle 6 as shown in Fig. 2. Taking the angle of
rotation 6 to be small and assuming that the stiffness of the resisting

elements out of its plane is negligible, the equations of motion can be
written as

Mii+Rx(61) +R, (82) = MG (1)
M 6""' Ry(d;) + Ry (Gu) = -M Gy (2)

Ip 6 + bRx (8,2) - bRx (81)
+ aRy (6,.) - aRy (63) = 0 (3)
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where ¢ éi(J = 1,2,3,4) 1s the displacement of the lateral resisting element j
in the direction of the plane of the element j. Dots represent differentiation
with respect to time t and Gy and Gy are the ground acceleration in the x and
y directions respectively. The force-displacement relationship is assumed

to be anti-symmetric, namely

R (8) = - R(-6) (4)

From Fig. 2, & 3 can be expressed in terms of the displacements of the
center of mass by

§y = u-">bo (5)
62 = u+bo (6)
85 = v -ad (7N
8 = v+ abd (8)

If the ground motion is in the X direction only, the lateral movement v
in the y direction will not be excited. Therefore, only equations (1) and
(3) need to be considered in this case. In order to allow for a variety of
restoring force-displacement relationships, it is most convenient to rewrite
equations (1) and (3) in the form

i+ mx2 @x(u,e) = -G (9)

2 7 _
6 + (.09 Qe(u,e> = 0 (10)
¢_(u,0) is propertional to the restoring force in the X direction when
the sti‘ucture is displaced an amount u and rotated through an amount 6.
Simllarly, <I>e(u,9) is proportional to the restoring torque when the structure
is displaced from its equilibrium configuration. wy and wg represent the
linear lateral and torsional natural frequencies respectively. They can be
calculated by the initial slope of the force-displacement relationship. The
formulae for determination of wy and wg for a symmetrical bullding with re-
sisting elements distributed in a variety of ways is given in ref. [3].

If the force-displacement relationship is linear such that

Rx(a) = kxd (11)
then &x{u,8) = u and ¢,(u,0) = 6. In this case, equations (9) and (10) are
uncoupled. Equation (8 ) represents the single-degree-of-freedom oscillator
and the torsional motion is not excited. However, if the force-displacement
relationship is nonlinear, ¢y and ¢4 in general are complicated functions of
both u and 6. Equations (9) and (18) are then coupled together and response
in u may give rise to a torsional response 8. Since the lateral resisting
elements are often loaded beyond their linear elastic limit during an earth-
quake, it is the rule rather than the exception that the force-displacement
relationships in the resisting elements are nonlinear.

To facilitate computations, a nondimensional time variable t is intro-
duced. T is defined by

T = wt (12)
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Equations (9, 10) can then be written as

2y du -G

gT‘ + 0.0l g +n* o (u,8) = Tx (13)
© 2
8
2
a8 4 0002 4+ (ue = o0 (1)
de dr 6

Two small viscous damping terms have been added in equations (13) and
(14) to represent the damping in the system both in translation and rotation
The added damping amounts to approximately 1% critical damping for systems
considered in the comutations.

FORCE-DISPLACEMENT RELATION

The force-displacement relationship of the resisting elements differs
depending on the form and material of construction of the elements. The
resisting element may take the form of planar frames made of steel, concrete
or timber. Also, it may take the form of shear walls made of concrete and
reinforced masonry. In this paper, two types of force-displacement curves
are considered.

Type I Curve:- The force~-displacement relation below the yield level
is taken to be elastic with a small softening nonlinearity. Once ylelding
starts, the element deforms in a plastic mamner. Mathematically it may be
written as

R (8) = kx(d - e6%) (15)

IR (8)| <R yield (16)

€ 1s taken to be a small quantity. A plot of a Type I Curve is shown
in Figure 3. It can be seen that the curve is a good representation of the
force-displacement relationship for a wide class of lateral load resisting
elements.

Type II Curve:- The force-displacement curve is taken to be hysteretic,

as shown in Fig. 4. It consists of a backbone curve and one ascending and one
decerding branch which forms the hysteretic loop. This type of force dis—
placement curve is representative of cross-braced frames and towers [4].
Such resisting elements do not take appreciable force when the structure is
deflected in the opposite direction after yielding in tension in the other
direction. Mathematically, they can be most conveniently described by the
expressions

) R R |7
s - - (an
y y y
and
n
cs- 8o _ RoFo 4, /R = _—
2y xy \ZRy
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where a is a constant and n is an odd integer. Ry and &_ denote the yield
force and displacement respectively and Ry and &, denote’the most recent
point in the force-displacement plot at which the loading has been reversed.
Equation (17) describes the backbone curve and equation (18) describes the
ascending and decending branches of the hysteresis loop. The curves are
characterized by the fact that the initial stiffnesses on first loading, on
unloading and on reloading are equal to each other. Force-displacement
relations as shown in Fig. U are sometimes known as hysteretic slip models.

While transforming equations (15) and (16) or equations (17) and (18)
into the form ¢,(u,6) and ¢g(u,6) may be complex analytically, cne can
generate the values of ®,(u,6) and ¢g(u,8) using a computer, based on
equations (15, 16) or equations (17, 18). Since equations (13) and (14) will
be solved numerically by means of a camputer, it is not necessary to express
the force-displacement curve in an analytical form of &,(u,8) and %g(u,6).

INDUCED TORSIONAL RESPONSE

Equations (13, 14) are numerically integrated for three kinds of ground
excitation. Shown in Fig. 5 is the response of the structure subjected to
13 cycles of sinusoidal ground excitation. The restoring elements of the
structure are assumed to have a Type I force-displacement relation. The
structure has a torsional period T = 0.35 sec., and the frequency ratio
n = 0.7. The period of the ground excitation is taken to be 0.5 sec. Fig. 5
shows the force-displacement relationship used in the calculation. Fig. 5¢
gives the lateral response u while Fig. 5d shows the induced torsional
response 6. By comparing Fig. '5c¢ and 53, it can be seen that the torsional
motion is excited only after the lateral response has reached a large
magnitude. Shown in Fig. 5a 1s the displacement at the periphery of the
structure where resisting element 1 is located. A comparison between Fig. 5a
and Fig. 5c makes it evident that the displacement at the periphery of the
structure is much larger than the displacement at the mass center.

If torsional motion is not excited, the displacements at the resisting
element 1 would be the same as that of the center of the structure. The
displacement at the center of the structure can be evaluated by treating the
structure as a single degree of freedom system capable of movement in the X
direction only. Therefcre, the ductility requirements on the resisting
elements at the periphery of the structure become exceptionally severe once
torsional motion is excited, as demonstrated in Fig. 5.

Shown in Fig. 6 is the response of a similar system subjected to the 1940
El Centro earthquake ground acceleration record. The torsional period of the
structure is taken to be 0.35 sec., and the lateral to torsional fregquency
ratio is 0.85. The resisting elements are assumed to have the same Type I
force-displacement relationship as shown in Fig. Sb. Fig. 6a shows the 1940
El Centro earthquake ground acceleration record and Fig. 6c and Fig. 63 show
the lateral and torsional responses of the structure. Fig. 6b shows the
displacement at the resisting element 1. It can be seen that the maximum
displacement at the periphery of the structure is more than twice the maximum
lateral response u.

In Fig. 7, the response of the structure to the El Centro earthquake

ground acceleration with a lateral to torsional frequency ratio of 0.6 is
given. The resisting elements of the structure are assumed to have a Type II
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force-displacement curve as shown in Fig. 7b. A comparison of the lateral
response u and torsional response 6 as shown in Fig. 7c¢ and Fig. 74
respectively shows clearly that torsional motion is excited only when the
lateral response is large. Again, the displacement at the periphery is
shown in Fig. 7a. In this case, the maximum displacement at the periphery
is 1.6 times as large as the maximm lateral displacement u.

Finally, the same structure as used in Fig. 7 is subjected to the 1952
Taft earthquake ground acceleration excitation. The responses are shown in
Fig. 8. Since the 1952 Taft earthquake acceleration record 1s less severe
than the El Centro record, the lateral response u is not as large. Conse-
quently, the torsional motion is only excited for a short period when the
lateral response is substantial. Fig. 8 shows the combined effect of
lateral and torsional response. The maximum response at the periphery is
only 20% larger than the lateral response in this case.

DISCUSSION AND CONCLUSION

In Fig. 5 to Fig. 8, the responses of a symmetrical structure subjected
to three different ground excitations are given. The resisting elements of
the structure are assumed to be either of the nonlinear yielding or the
hysteretic slip-type. It is shown that in all cases torsional motions are
induced due to the nonlinear coupling with the lateral response.

The torsional motion is excited at instances when the lateral response
of the structure is large. With the torsional motion excited and the lateral
response large, the combined effect of translation and rotation of the
structure places very severe requirements on the ductile behaviour of the
resisting elements at the periphery of the structure. Ductility requirements
based on the calculation of lateral response alone will be insufficient if
torsional motions are also induced. As shown in the examples of the present
paper, the ductility requirement on the resisting elements may be twice as
large as that based on calculations of the lateral response alone. There-
fore, from a design point of view, one should always take into account the
possible torsional motions of the structure in estimating the ductility
requirements of the resisting elements located at the periphery of the
structure.

It should be pointed out that the lateral to torsional frequency ratio
n is an important parameter to determine whether torsional response will be
excited. Consider the case of the responses as shown in Fig. 6 where n = 0.85.
If the frequency ratio is changed to 0.7, the torsional motion will not be
excited. The critical range of frequency ratio in which torsional motions
are likely to be excited depends both on the force-displacement characteristic
of the resisting elements and the characteristic of the ground excitation.
For the different combinations of resisting elements and ground excitations
investigated, the critical range has a spread from 0.6 to 0.9. Further
classification of the critical frequency range with respect to resisting
element characteristics is needed in order to assess the likelihood of this

type of parametrically excited torsional motion occurring in symmetrical
structures.
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